

www.sown.org.uk17/11/2016

Firmware development
for embedded devices

Chris Malton

About me
- Been with SOWN since 2009!
- Network engineer at Vostron
- Now work for swlines and Realtime Trains

- Includes embedded hardware
development

Node firmware management for the latest generation
of SOWN nodes.

17/11/2016 www.sown.org.uk

Firmware development for embedded
devices

Introduction

• What are embedded devices?
• Why embedded?
• Software, Hardware, Firmware?
• Booting on embedded devices
• Flashing embedded devices
• Embedded Linux
• OpenWRT – Embedded Linux for Routers
• Putting it all together

2

Lot of content to cover
Not a lot of time
Quite text-heavy presentation.
We'll start with details of what embedded devices are,

then move on to define the differences between
software hardware and firmware.

Booting on embedded devices is a complex process
and we'll skip over much of the details. With
apologies in advance to those who think I've over-
simplified it!

Once we've looked at how you boot on an embedded
device, we'll look at how you get firmware onto it to
start with.

Then we'll consider what Embedded Linux is, and
consider a specific type of embedded linux. Then
we'll put it all together.

www.sown.org.uk17/11/2016

What are embedded devices?

● Lots of things…
● Access points
● The lectern controller
● Your mobile phone
● And lots… lots… more!

There are lots and lots and lots of embedded
devices. LOTS!

That includes…. Access points – like the one above
me, the lectern controller that's controlling the
projector. Even your mobile phone…

There's literally hundreds of them everywhere. For
those of you with amateur radios, your radios are
embedded devices.

Embedded normally refers to something running
some low-level code and not being frequently
updated.

www.sown.org.uk17/11/2016

Why embedded?

● Generally not easily upgradeable
– Better than it used to be!

● Smaller devices
● Easier for manufacturers

– Single configuration to support

● Easier for end users
– It “just works”

Embedded devices are often generally fairly static
and can't be readily updated. This is a great idea,
but sometimes you just need to fix things.

These days, things have got better and it's now
much, much easier to change things. This isn't
necessarily a good thing from a security
perspective.

It allows manufacturers to make smaller devices as
they can use chips designed for specific tasks
rather than lots of individual chips for each feature.

This leads to an easier support arrangement for the
manufacturer because there's only one
configuration to support.

Embedded devices have to “just work” for the end
user because they normally aren't user servicable.

www.sown.org.uk17/11/2016

Software, Hardware, Firmware?

● Hardware
– The physical electronics that everything runs on.

– Can't easily be upgraded

● Software
– Runs on the hardware

– Upgraded regularly (think your office programs, email clients, etc)

● Firmware
– Runs on the hardware

– Not upgraded frequently

Hardware is the physical devices that are running
code. They are manufactured to specifications and
usually cannot be modified after production. They
have to made right first time.

Software, on the other hand, is the exact opposite. It
can be modified regularly and runs on hardware.
Therefore, as long as software supports self-
upgrade you can upgrade all the software that runs
on a bit of hardware.

Firmware sits somewhere between the two. It runs
on hardware, but isn't normally upgraded regularly.
If you think of a standard PC, the BIOS could be
regarded as firmware. It is essentially the first bit of
code that gets loaded and is responsible for loading
the rest of the software.

PC Boot sequence: Firmware (BIOS) → Software
(Boot loader) → Software (Windows/Linux) – Macs
are a little bit different!

www.sown.org.uk17/11/2016

Booting embedded devices

● The hardware has to start somewhere
● “Boot address”

– The memory location that the first instruction is read from

– Defined by the chip manufacturer – not usually able to be
changed

● Initial chip configuration
– Something your firmware has to do!

– This includes setting up access to memory/disks!

Every bit of hardware has to start running code from
somewhere. This is called the Boot Address. This
is normally a small space of non-volatile memory.

On a desktop PC, this is usually the processor
microcode, which reads the BIOS into memory and
starts executing it.

On embedded devices, they normally just boot
straight into code from the built-in electronically
erasable programmable read only memory
(EEPROM).

The first thing you need to do in this microcode or
EEPROM-stored program is initialise hardware,
timing parameters, access to other memory and
disks (if present).

www.sown.org.uk17/11/2016

Booting embedded devices (2)

● Many embedded devices run Linux
– Easy to add modules to the kernel for new devices

– Very customisable

– Can be made very small (<1MB in extreme cases)

● Compressed kernels
– Using LZMA/gzip/bzip for compression.

– On embedded devices usually not used.

– Requires “bootloader” support

Somewhere in the middle of it all, there are a whole
collection of (normally) ARM-based devices. These
are system-on-chip machines (think like the
Raspberry Pi). Many of these support Linux as an
operating system.

Linux, being a module-based operating system, can
have a very small kernel, with only the necessary
drivers to load the rest of the modules. In extreme
cases, this can be as small as under 1MB, although
typically most Linux kernels are 1-2MB.

Compressing a kernel is often a good way to save
space – however, needs support from whatever
launches the kernel (normally a bootloader). This
can reduce the kernel by as much as 50% in some
cases, but normally this is not used on embedded
devices as compression and decompression are
slow and complex routines to implement and are
normally software driven.

www.sown.org.uk17/11/2016

Booting embedded devices (3)

● Several embedded boot loaders exist.
● Most commonly used is uBoot

– Initialises basic hardware, CPU, and flash.

– Can accept flash images over the network.

– Sometimes locked by the vendor to only boot vendor images

– Loads kernel into a memory location and boots it with options

● Linux kernel starts in a semi-configured
environment

Most embedded devices start the Linux kernel in a
partially configured environment. This is normally
configured by a boot-loader – the most common
one used on embedded devices is uBoot –
pronounced you-boot.

It's a very small boot-loader that initialises basic
hardware operations, usually allows reflashing the
device. It's also open source, which means that
hardware vendors can change things….. and they
do.

In response to recent FCC rulings, some vendors
have required digitally signed images to restrict
customised firmware being flashed onto devices.

www.sown.org.uk17/11/2016

Flashing embedded devices

● Often possible via the bootloader.
– Normally accepts unsigned images

– Sometimes TFTP/HTTP upload

– Sometimes XMODEM upload over serial

● Sometimes possible via the installed O/S
– Often requires the image be “signed” by the vendor

– FCC regulation imposes this on many wireless devices!

● Sometimes requires connecting to the flash directly.
– If you can't flash via the bootloader and the O/S only accepts signed

images

Flashing embedded devices requires support on the
device for rewriting the flash memory chip. Most
devices now support this and very few do not.

The bootloader is the most common way of accepting
new images. It often accepts unsigned images, but
not on all hardware. Flashing methods vary. Some
will copy from network, others require more
elaborate flashing schemes.

The running O/S can also write to the flash. In the
case of some devices, this doesn't overwrite the
running image, only the startup image so changes
are only reflected after a reboot.

In rare cases, you can't flash a device without directly
connecting to the flash itself. This sometimes is via
the software debugging port, but the most common
method using the JTAG protocol and port. This is
quite an involved process.

www.sown.org.uk17/11/2016

Embedded Linux

● There's nothing special about Embedded Linux.
– It's a customised version Linux kernel and that's about it

● Linux on its own isn't much use……
● Enter Busybox

– A set of tools for actually getting a shell on an embedded
machine.

– Includes things like…. “init”, “ls”, “sh” and friends.

– Usually a single file that behaves differently depending how you
call it (multi-call binary).

Embedded Linux isn't actually anything special. It's a
standard Linux image. The Linux kernel won't
actually give you anything useful. You need a full
distribution. In reality, the “easiest” way to do this is
using the “busybox” multi-call binary. It behaves
differently depending how you invoke the program.

Busybox gives a bare minimum set of system utilities,
such as cp, wget and module loading tools.
Fundamentally it includes “init” a system binary that
runs other processes.

It's designed to give enough functionality to do basic
operations without doing anything more.

www.sown.org.uk17/11/2016

Embedded Linux

● We need to be able to run programs….
– Like DHCP servers, DNS servers, wireless authentication

supplicants (wpa-supplicant)

● “libc” - The standard C library
– Too big for many embedded linux devices.

– 1.8MB on a standard Linux installation

– Some devices only have 4MB of flash!

● Enter uClibc
– Standard C Library replacement for embedded devices

– Others exist – musl, elibc, etc.

www.sown.org.uk17/11/2016

OpenWRT

● OpenWRT is a distribution of Linux
● Designed for embedded devices – specifically

aimed at network devices.
● Hundreds and hundreds of optional packages
● Uses uclibc/elibc/musl as a C library
● Provides a build environment that can build for

many common hardware targets. (The toolchain)

OpenWRT is a linux distribution built on top of
busybox and a stripped down Linux image. It's
aimed at network devices, which is why we're
interested in it. Other distributions exist.

It includes a whole raft of additional packages that
are available right the way up to full window
managers and graphical environments.

It also has several choices of embedded C library.
These libraries are stripped down versions of the
standard C library. “Stripped down” in so much as
they try and implement the largest possible feature
set in the smallest possible space.

The build environment for OpenWRT is a well
established environment for building firmware
images for embedded systems. It is used on many
network devices.

www.sown.org.uk17/11/2016

OpenWRT (2)

● Designed to be as small as possible
● Most of the time it “just works”
● Sometimes need work to support new devices

– The AR150 hardware we use needed this to start with

– Often very quickly migrates into the “master” branch

● Builds firmware images that are ready to flash.
– Most of the time…..

OpenWRT is designed to be as small as possible
while delivering as much functionality as possible.

Typically fits in <8MB of flash memory.
Often the build environments just work – but it's not

always the case.
Our nodes required a custom build of firmware to run

on the new hardware we were working on. We had
to merge extra features from patches on the
OpenWRT mailing list, which then made it into
master very quickly.

We're now trying to support a new hardware platform,
and that needs work.

The build environment “just work” for the vast
majority of situations. But they don't always. Some
images require some custom tweaking to get things
to work reliably. This can involve spending a long
time adjusting kernel options.

www.sown.org.uk17/11/2016

SOWN on top of OpenWRT

● SOWN injects custom packages on top of the
OpenWRT core.
– We install these at build time, so they are baked into the image.

● These packages do the basic set up
– Configure VPN tunnels

– Install the configuration files from our servers

SOWN builds on the flexibility of OpenWRT and
injects custom packages at build time on top of the
OpenWRT core.

We install as little as possible in terms of
configuration at build time and then install
configuration after the tunnels are all configured
and running.

The basic packages retrieve configuration from our
servers, and then configure the remaining parts of
the build.

www.sown.org.uk17/11/2016

SOWN on top of OpenWRT

● We don't make any major configuration changes
to OpenWRT.

● We maintain the OpenWRT configuration files via
a minimal configuration distribution mechanism.
– (Sadly) relies on cURL – which introduces large libraries to the

build

– If Busybox's wget supported the certificates magic we need….

We don't do any major configuration changes to
OpenWRT – we do overwrite some of their
configuration files using our own configuration
management tool. This configuration tool is
actually based on cURL due to the way the client-
side certificates work for authentication which
brings in a large file dependency (libcurl). It's not
practical to run Puppet/Chef/configuration-
manager-du-jour on a node.

In overwriting some of these files (like
/etc/config/network) we actually break a few things.
We're still working on a solution for the new MT300
based nodes, because they don't use a config like
anything we've used before.

www.sown.org.uk17/11/2016

SOWN Firmware build process

● OpenWRT build tree on github
– https://github.com/sown/openwrt

● Configuration files for each target we build for
● These should not need modifying!
● Follow standard openwrt build instructions

– [LINK]

The SOWN firmware for the latest nodes follows
standard OpenWRT build process. There's actually
nothing special, bar a couple of packages being
selected. We put the configuration files for the
build tree in the repository, so you can copy them to
.config as per standard OpenWRT and just build.

The main essence of the OpenWRT build sequence
is simply make menuconfig/oldconfig then simply
make.

The build process takes about 3-4 hours from a “cold”
environment, ~1 hour from a “warm” environment,
and minutes in a “hot” environment.

www.sown.org.uk17/11/2016

SOWN firmware flashing

● Different for every form of hardware…
– AR150 is the easiest we've had yet!

● We have scripts to connect to the network
console and flash images.

● uboot is unlocked and accepts unsigned images
● By far some of the easiest hardware to flash!

– Other hardware requires JTAG!!!!!

Flashing the AR150 nodes is one of the easiest tasks
we've had yet. Apart from the console, which relies
on some UDP port 6666 hackery, with the right
sequence of button presses we get an unlocked
uboot instance that we can flash images over a
web interface!!!!

Our older nodes sometimes required JTAG, but only
in rare cases. All SOWN hardware has been
network-flashable for many years.

www.sown.org.uk17/11/2016

SOWN Firmware Flashing

● Demo

